一、HashMap概述
在JDK1.8之前,HashMap采用
数组+链表
实现,即使用链表处理冲突,同一hash值的节点都存储在一个链表里。但是当位于一个桶中的元素较多,即hash值相等的元素较多时,通过key值依次查找的效率较低。而JDK1.8中,HashMap采用数组+链表+红黑树
实现,当链表长度超过阈值(8
)时,将链表转换为红黑树
,这样大大减少了查找时间。
下图中代表jdk1.8之前的hashmap结构,左边部分即代表哈希表,也称为哈希数组,数组的每个元素都是一个单链表的头节点,链表是用来解决冲突的,如果不同的key映射到了数组的同一位置处,就将其放入单链表中。
jdk1.8之前的hashmap都采用上图的结构,都是基于一个数组和多个单链表,hash值冲突的时候,就将对应节点以链表的形式存储。如果在一个链表中查找其中一个节点时,将会花费O(n)的查找时间,会有很大的性能损失。到了jdk1.8,
当同一个hash值的节点数不小于8时,不再采用单链表形式存储,而是采用红黑树
,如下图所示。上图很形象的展示了HashMap的数据结构(数组+链表+红黑树),桶中的结构可能是链表,也可能是红黑树,红黑树的引入是为了提高效率。
二、涉及到的数据结构:处理hash冲突的链表和红黑树以及位桶
1、链表的实现
Node是HashMap的一个内部类,实现了Map.Entry接口,本质是就是一个映射(键值对)。上图中的每个黑色圆点就是一个Node对象。来看具体代码:
1 | //Node是单向链表,它实现了Map.Entry接口 |
可以看到,node中包含一个next变量,这个就是链表的关键点,hash结果相同的元素就是通过这个next进行关联的。
2、红黑树
1 | //红黑树 |
红黑树比链表多了四个变量,parent父节点、left左节点、right右节点、prev上一个同级节点,红黑树内容较多,不在赘述。
3、位桶
1 | transient Node<k,v>[] table;//存储(位桶)的数组 |
HashMap类中有一个非常重要的字段,就是 Node[] table,即哈希桶数组,明显它是一个Node的数组。
有了以上3个数据结构,只要有一点数据结构基础的人,都可以大致联想到HashMap的实现了。首先有一个每个元素都是链表(可能表述不准确)的数组,当添加一个元素(key-value)时,就首先计算元素key的hash值,以此确定插入数组中的位置,但是可能存在同一hash值的元素已经被放在数组同一位置了,这时就添加到同一hash值的元素的后面,他们在数组的同一位置,但是形成了链表,所以说数组存放的是链表。而当链表长度太长时,链表就转换为红黑树,这样大大提高了查找的效率。
三、HashMap源码分析
1、类的继承关系
1 | public class HashMap<K,V> extends AbstractMap<K,V> implements Map<K,V>, Cloneable, Serializable |
可以看到HashMap继承自父类(AbstractMap),实现了Map、Cloneable、Serializable接口。其中,Map接口定义了一组通用的操作;Cloneable接口则表示可以进行拷贝,在HashMap中,实现的是浅层次拷贝,即对拷贝对象的改变会影响被拷贝的对象;Serializable接口表示HashMap实现了序列化,即可以将HashMap对象保存至本地,之后可以恢复状态。
2、类的属性
1 | public class HashMap<K,V> extends AbstractMap<K,V> implements Map<K,V>, Cloneable, Serializable { |
类的数据成员很重要,以上也解释得很详细了。
3、类的构造函数
(1)HashMap(int, float)型构造函数
1 | public HashMap(int initialCapacity, float loadFactor) { |
tableSizeFor(initialCapacity)返回大于initialCapacity的最小的二次幂数值。
1 | static final int tableSizeFor(int cap) { |
>>> 操作符表示无符号右移,高位取0。
(2)HashMap(int)型构造函数。
1 | public HashMap(int initialCapacity) { |
(3)HashMap()型构造函数。
1 | public HashMap() { |
(4)HashMap(Map<? extends K>)型构造函数。
1 | public HashMap(Map<? extends K, ? extends V> m) { |
putMapEntries(Map<? extends K, ? extends V> m, boolean evict)函数将m的所有元素存入本HashMap实例中。
1 | final void putMapEntries(Map<? extends K, ? extends V> m, boolean evict) { |
4、hash算法
在JDK 1.8中,hash方法如下:
1 | static final int hash(Object key) { |
(1)首先获取对象的hashCode()值,然后将hashCode值右移16位,然后将右移后的值与原来的hashCode做异或运算,返回结果。(其中h>>>16,在JDK1.8中,优化了高位运算的算法,使用了零扩展,无论正数还是负数,都在高位插入0)。
(2)在putVal源码中,我们通过(n-1)&hash获取该对象的键在hashmap中的位置。(其中hash的值就是(1)中获得的值)其中n表示的是hash桶数组的长度,并且该长度为2的n次方,这样(n-1)&hash就等价于hash%n。因为&运算的效率高于%运算。
1 | final V putVal(int hash, K key, V value, boolean onlyIfAbsent, |
tab即是table,n是map集合的容量大小,hash是上面方法的返回值。因为通常声明map集合时不会指定大小,或者初始化的时候就创建一个容量很大的map对象,所以这个通过容量大小与key值进行hash的算法在开始的时候只会对低位进行计算,虽然容量的2进制高位一开始都是0,但是key的2进制高位通常是有值的,因此先在hash方法中将key的hashCode右移16位在与自身异或,使得高位也可以参与hash,更大程度上减少了碰撞率。
下面举例说明下,n为table的长度。
5、重要方法分析
(1)putVal方法
首先说明,HashMap并没有直接提供putVal接口给用户调用,而是提供的put方法,而put方法就是通过putVal来插入元素的。
1 | public V put(K key, V value) { |
putVal方法执行过程可以通过下图来理解:
①.判断键值对数组table[i]是否为空或为null,否则执行resize()进行扩容;
②.根据键值key计算hash值得到插入的数组索引i,如果table[i]==null,直接新建节点添加,转向⑥,如果table[i]不为空,转向③;
③.判断table[i]的首个元素是否和key一样,如果相同直接覆盖value,否则转向④,这里的相同指的是hashCode以及equals;
④.判断table[i] 是否为treeNode,即table[i] 是否是红黑树,如果是红黑树,则直接在树中插入键值对,否则转向⑤;
⑤.遍历table[i],判断链表长度是否大于8,大于8的话把链表转换为红黑树,在红黑树中执行插入操作,否则进行链表的插入操作;遍历过程中若发现key已经存在直接覆盖value即可;
⑥.插入成功后,判断实际存在的键值对数量size是否超多了最大容量threshold,如果超过,进行扩容。
1 | final V putVal(int hash, K key, V value, boolean onlyIfAbsent, |
HashMap的数据存储实现原理
(1)流程:
1.根据key计算得到key.hash = (h = k.hashCode()) ^ (h >>> 16);
2.根据key.hash计算得到桶数组的索引index = key.hash & (table.length - 1),这样就找到该key的存放位置了:
① 如果该位置没有数据,用该数据新生成一个节点保存新数据,返回null;
② 如果该位置有数据是一个红黑树,那么执行相应的插入 / 更新操作;
③ 如果该位置有数据是一个链表,分两种情况一是该链表没有这个节点,另一个是该链表上有这个节点,注意这里判断的依据是key.hash是否一样:
如果该链表没有这个节点,那么采用尾插法新增节点保存新数据,返回null;如果该链表已经有这个节点了,那么找到该节点并更新新数据,返回老数据。
注意:
HashMap的put会返回key的上一次保存的数据,比如:1
2
3
4HashMap<String, String> map = new HashMap<String, String>();
System.out.println(map.put("a", "A")); // 打印null
System.out.println(map.put("a", "AA")); // 打印A
System.out.println(map.put("a", "AB")); // 打印AA
(2)getNode方法
说明:HashMap同样并没有直接提供getNode接口给用户调用,而是提供的get方法,而get方法就是通过getNode来取得元素的。1
2
3
4public V get(Object key) {
Node<k,v> e;
return (e = getNode(hash(key), key)) == null ? null : e.value;
}
1 | final Node<K,V> getNode(int hash, Object key) { |
(3)resize方法
①.在jdk1.8中,resize方法是在hashmap中的键值对大于阀值时或者初始化时,就调用resize方法进行扩容;
②.每次扩展的时候,都是扩展2倍;
③.扩展后Node对象的位置要么在原位置,要么移动到原偏移量两倍的位置。
1 | final Node<K,V>[] resize() { |